Gee Law’s Blog

Blogging my blog

A meta-blog that keeps the trace of my blog site. The latest update updates KaTeX 0.10.1 to 0.11.1.

《悲惨世界》概念版歌词计划 16

本系列旨在忠实提供 1980 版的《悲惨世界》概念版音乐剧的歌词。第十六篇记录了 Javert démasqué、Le retour d'Éponine 和 Ce n'est rien 的歌词,情节跌宕起伏,先是革命者捉住了间谍 Javert,紧接着就是 Éponine 为爱牺牲。

《悲惨世界》概念版歌词计划 16

NP 验证式的答题风格

神来之笔一般的答案背后是草稿纸上的一通狂算,考试要看的是神来之笔,但其实一通狂算里的思路更有价值。关键词:十一学校、抄答案、“注意到”、“草稿”。

《悲惨世界》概念版歌词计划 15

本系列旨在忠实提供 1980 版的《悲惨世界》概念版音乐剧的歌词。第十五篇起是第三幕,这一篇记录了 Construction de la barricade 和 La faute à Voltaire 的歌词。另外,系列中本篇首次启用新注解模式。

《悲惨世界》概念版歌词计划 15

Red envelopes

WeChat has this function to distribute red envelopes of random amount of money. The natural question to ask is how to sample the amount of money each person who opens the envelope should receive.

Red envelopes

在博客中使用 BibTeX

在博客中使用 BibTeX 的需求起源于一些需要引用文献的博文。例如之前的 NC¹ 属性加密 [KW19],那时候我是手工格式化参考文献的。当然,能自动化就不要手工去做,于是几个月前我开始了 BibTeX-TS——TypeScript 写的 BibTeX 解析器。现在设施已经足够完备,我可以把 alpha.bst 的实现近似翻译到 JavaScript 里,成为博客构建系统的一部分。

在博客中使用 BibTeX

《悲惨世界》概念版歌词计划 14

本系列旨在忠实提供 1980 版的《悲惨世界》概念版音乐剧的歌词。第十四篇记录的是 L'attaque de la rue Plumet 和 Demain(对应于之后版本里的 One Day More 和 Le grand jour)的歌词。第二幕完结撒花!

《悲惨世界》概念版歌词计划 14

Two (equivalent) definitions of computational indistinguishability, two (isomorphic) ways of doing hybrids

It wasn’t until recently did I realise there are two isomorphic ways (different styles) of writing hybrid proofs. They actually correspond to the two equivalent definitions of computational indistinguishability — one based on guessing and the other based on distinguishing. Actually, I’ve been writing both kinds of proofs subconciously.

Two (equivalent) definitions of computational indistinguishability, two (isomorphic) ways of doing hybrids

A note on (non-)uniform reductions

I learnt how to write uniform hybrid reductions in my rudimentary cryptography course, which are beasty beauties that wrap an adversary, trying break each of the many underlying cryptographic assumptions simultaneously. However, those constructions are less easy to write and read than using the transitivity of computational indistinguishability up to polynomially many times. The latter involves writing out the (perhaps polynomially many) hybrids and arguing that adjacent hybrids are indistinguishable. I also learnt non-uniform reductions, noticeably the technique to only work with deterministic adversaries. I’m writing a proof using hybrid argument lately, and I asked my advisor about whether I should write the beast or just the hybrids…

A note on (non-)uniform reductions